Implementation and performance analysis of
Barkan, Biham and Keller’s attack on A5/2

Nicolas Paglieri, Olivier Benjamin
Ensimag, Grenoble Institute of Technology, INP

June 8, 2011

Abstract

Barkan, Biham € Keller proposed an instant
ciphertezt-only attack on the A5/2 cipher used in
GSM. This paper presents a concrete and turnkey
implementation of a tool simulating this attack on a
personal computer. This program is able to recover
the secret key that has been used in encryption in a
matter of seconds, with precomputations of around
2 hours necessiting 4 GB of memory space.
Keywords: GSM, A5/2, attack, implementation

1 Introduction

It’s an open secret that the privacy in GSM — Global
System for Mobile communication, the standard
used in 80% of the world’s mobile phones — is com-
promised. The A5 set of ciphers it uses has been
proven incapable of preventing data from being de-
crypted. The architecture of the standard makes
it particularily vulnerable to man-in-the-middle at-
tacks, and since all algorithms share a common key,
the system is as weak as its weakest algorithm:
A5/2. Thus, this article focuses on it! because
breaking it is equivalent to breaking the entire en-
cryption scheme, and this attack is both very quick
and effective. This paper is organized as follows:
Section 2 provides some short technical background
on GSM; Section 3 explains how GSM encoding/de-
coding was simulated; Section 4 presents the attack
in terms of implementation and performances; Sec-
tion 5 describes our implementation’s general pur-
pose; Finally, Section 6 presents some countermea-
sures that may be considered.

L Attacks on the other ciphers exist [1] [2]

2 Technical Background

GSM is a standard set developed by the ETSI (Fu-
ropean Telecommunications Standards Institute) to
describe technologies for second generation digital
cellular networks. Its first specifications were pub-
lished in 1990, and included some incipient kind
of consideration for security threats. This section
only expounds technical aspects of GSM that are
relevant to the elements presented in this paper.

2.1 Error Correcting Codes

The GSM standard defines numerous communica-
tion channels, each dedicated to a particular use.
Every channel has its own coding and interleaving
scheme. Here we focus on the SACCH — Slow As-
sociated Control CHannel, used for other channels’
monitoring — on which the attack will be based.

In real GSM systems, data is transmitted over
radio waves, so they are more error-prone than
most communication channels, implying the need
of error correcting codes. In GSM communica-
tions, three successive error correction schemes are
used. A short description of these schemes can
be found in [3] but the explaination proposed in
this paper is more explicit. The first one is a Fire
code, which is a cyclic code, and the one used in
GSM is characterized by the polynomial generator
g(X) = (X +1)(X'"+ X3 +1). It is used to en-
code a 184-bit vector into a 224-bit one containing
the original vector, to which is appended a 40-bit
cyclic redundancy check ~-CRC-. Four bits equal
to zero are then simply added to the tail of this
vector to form a 228-bit one. The second correction
code used is a %—rate convolutional code whose

Go(X) =1+X3+ X4
Gi(X) =1+X+X3+X*~
In other words, a vector (ug, 1, ..., uga7) would be
changed into the vector (vg,v1, ..., v455) such that
Vk €]0,227], var, = vg D vk—3 D vk_4a
V2k+1
VkE<OQur =0

Then comes the third correction scheme: the in-
terleaving. Its aim is to reorder the bits of the
vector, so that two bits that were originally close —
and hence contained redundant information about
one another — are then far apart. It is done by
constructing the table page 98 in [3], that we will
call T here. This lookup table is built so that
V k €]0,456], T'(i,j) = ug, where i = k mod 8
and j = 2((49 x k) mod 57) + ((k mod 8) div 4).
After the table is created, the new vector is con-
structed. To do so, the table is separated into two
subtables: one for the even-numbered bits — the
first 4 columns —, and one for the odd-numbered
ones — the last 4. Both of them are then read
alternatively, top to bottom, left colum to right
colum, and the corresponding value of wuy is placed
into the current bit of the vector. The resulting
vector is of the form:

generators are {

(V0, V1, V2, V3, -+ V1145 V1155 V1165 V117, -+

V227, V2285 V229, V230, -5 U340, U341, U342, U343 -+, V455)
= (UO7U2287U64,U292,-~-,U57,U285,U121,U349,-~-,
U114, U342, U178, U406, --+) U171, U399, U235, UT, .-, U335)
If an error should happen over a few bits, for
instance bits v114 and wvy15 are flipped, it has no
impact, since they were not initialized by elements
that were in no way related.

The test vector (hex representation, MSB first):

5E89B2D7F5C04D54D54D64D96A17AD54DC55D62AABA416
would be fully encoded into:
52027BF6524C84804F41F32D3418A063F3C826FCFE40C9
A37AF076007101896CCOF76000DA356EDS8A836F6CAA2F7
BCOB6028A2DE8B013764AB

2.2 A5/2 cipher

A5/2 is a stream cipher using 4 different LFSRs
(Linear Feedback Shift Registers). It is a weaker
version of A5/1 (much stronger, but also already
cracked [1]), and was developped in 1999 to conform
to cryptographic export policies outside the Euro-
pean Union (strong cryptography was seriously re-
stricted at this time).

The LFSRs are initialized from a 64-bit secret

=V, B vg_1 DVg_3DVE—_g .

LFSR1 4
—fo]1]2] ['s [7]8]9 r0]u]iz]as14]15] a6 [a7] a8}
, Sy - o
LFSR 2 a——
2] [6]7] [rofsa [33Tss 3] 15 [56] 20|21
,’\ij]

D TR

LFSR 3 4
m JEE [o [af &5 [10]u1]s2[i8] e [a[36] v 38T v [20[2a] 22}
O Clocking \‘ -

\ Unit e

LFSR 4 e PR S
o 3 7 0] 11 16 \QKeys(ream‘

|

i
5% ©

Figure 1: A5/2 cipher with its 4 LFSRs

key K. and a public 22-bit initial value f (GSM
Frame Identifier) according to a procedure called
Key Setup:

LFSR1 = LFSR2 = LFSR3 = LFSR4 = 0

for (int i=0 ; i<63 ; ++i) {
clockAllRegisters();
LFSR1[i] "= Kc[i]; LFSR2[i] "= Kc[il;
LFSR3[i] "= Kc[i]; LFSR4[i] "= Kc[i]l;

}

for (int i=0 ; i<22 ; ++i) {
clockAllRegisters();
LFSR1[i] ~= f[i]; LFSR2[i] "= f[il;
LFSR3[i] "= f£[i]; LFSR4[i] "= f[il;

}

LFSR1[15] = LFSR2[16] = LFSR3[18] = LFSR4[10] = 1;

Majority functions return 1 if at least two entry
bits are non-zero. The clocking unit (only used af-
ter Key Setup phase) also includes a majority func-
tion: at each cycle, LFSR1 (resp. LFSR2, LFSR3)
is clocked if LFSR4[10] (resp. LESRA4[3], LFSRA4[7])
is the same as the majority bit. Thus, a new bit of
keystream is produced at each cycle. The first 99
bits of generated keystream are simply discarded.
Then the following chunks of 228 bits are used to
encrypt messages: the first half of 114 bits is dedi-
cated to network-to-phone encryption, and the next
114 bits are dedicated to phone-to-network encryp-
tion. The encryption itself consists of a bitwise
XOR of the message (divided into 114-bit frames)
with the 114-bit related keystream.

3 Simulation of GSM
transmission

Sound Recording Sound
& Wave Encoding Playing
Digital
4 Data
g
=
SN
Error Correction <8 §. < <& Data
(Redundancy) &&* | 5] &" Decoding
3
g

A5/2 Keystream s

@ i

_#: A5/2 Keystream
Encryption (xor) Q.J"“-l‘ ;

e Decryption (xor)

Encrypted
Data

(((«p))) Loopback @]

Figure 2: Full Simulator Process

3.1 From Wave to Digital Data

GSM is usually used for voice communication.
Even if the aim of the channel considered here isn’t
actually to carry voice signal, it is more spectac-
ular to prove that one can eavesdrop on calls, so
the first step is to convert sound waves into GSM-
encoded sound files. One easy way to proceed is
to use a microphone to record the sound as a wave
file, then to use SoX (Sound eXchange[4]) libraries
to correctly compress the data for GSM use. The
digital data must then be split into 114-bits packets
to simulate SACCH frames ; the rest of the chain is
applied to each packet separately. The packets are
finally recombined only during the last transforma-
tion (from digital data to wave, when playing the
sound).

3.2 Error-correcting codes

Given that every error-correcting code described in
section 2.1 is linear, they can all be expressed as
transformation matrices. We provide all the under-
mentioned matrices of this section in a separate file
const_matrices.h, available on our website [5].

Fire Code

The Fire code is a CRC, so it is easy to con-
struct the corresponding 184 x 224 binary matrix:
each line of the matrix is the polynomial (see
section 2.1) in reversed binary representation
(10010000000000000100000100100000000000001)

that is shifted 1 bit to the right at each new line,
starting on the upper left corner. Then a Gauss
Elimination is performed to get the matrix in
systematic form: G, = (Idig4 ‘ Trire) where
Trire 1s a 184 x 40 matrix processing the CRC. We
finally append four columns of zeroes at the end of

"rires to form a 184 x 228 matrix, noted G pire.

Convolution

The 228 x 456 convolution binary matrix Ggone
may be obtained from the two sets of bits

Sp = 11001 for even indexes
{ S; =11011 for odd indexes

to the code polynomials (see section 2.1).

corresponding

So 51
1 1
1 1)1 1
0 0|1 1 11
0 1]0 0 1 1 1 1
—</1 1101 0 0 1 1 1 1
1101001111
1101 0011
1 101 0 O
1 1 0 1
11

When expressed vertically, Sy & S; form a pat-
tern (designated by — ... «) that is propagated
through Geone: Each line contains this pattern,
starting from the upper-left corner ; then it is
shifted 2 bits to the right for each new line.

Interleaving

The interleaving matrix is a simple 456 x 456 per-
mutation matrix, totally described by (vg) ke[0,455] -

Global Matrix

Our implementation takes advantage of these ma-
trices during the encoding phase. Let G = Gpjre X
Gconv X Grng- This 184 x 456 binary matrix can
be used to directly compute the encoded message
¢ from clear text z: ¢ = x X G. The use of matri-
ces instead of standard functions makes the whole
encoding process a lot faster (see performance anal-
ysis on figure 3).

. 1ooooo
M
E =
@ 1000
£
=
2] 10
=
F
g 01
2
a
0,001

100kB

S500kB

5 kB
47040
405386

20kB
155117
1540888

100kB
754746
7721346

500kB
36353380
38978659

W Using Matrix G (ps)
W Using Functions (us)

Figure 3: Encoding speed test, logarithmic scale

Decoding

For the simulation to be realistic, it is mandatory
to encode the message, thus creating redundancy —
that is one of the conditions for the attack to work.
Since radio waves are not used in this simulator
(there is a simple loopback at the end of the chain),
no transmission errors should appear.? Hence, it is
not necessary to be able to correct any errors. The
decoding phase is therefore much simpler. First
the encoded message must be de-interleaved (that
is made simply by inverting Grpy), then the convo-
lution can be reverted by bitwise XORing each cou-
ple of bits (and trimming the additional zeroes at
the end), and finally the CRC can just be trimmed
to make the message fit the initial data size.

2If you really want to correct errors, you can consider
using the Viterbi algorithm to revert the convolution step.
The Fire code used here is much more a way of detecting
residual errors than correcting them.

3.3 Encryption

A A5/2 generator produces keystream (in accor-
dance to section 2.2). The only difference here
is that our implementation uses all the bits pro-
duced by the cipher with no distinction of purpose
(phone-to-network /network-to-phone — still we skip
the first 99 ones). It has absolutely no incidence on
the global process (except in a conceptual way), nor
on the attack, but it simplifies the comprehension
of the attack steps. Both encryption and decryp-
tion consist of bitwise XORing the keystream with
the message.

4 Barkan, Biham & Keller’s
attack on A5/2

4.1 Overview

GSM uses correcting codes introducing a lot of re-
dundancy in the encoding process. They also dif-
fuse the data throughout the message, so that an
error occurring over several bits of data will not
tamper with both the original and the redundant
value. A5/2 is a stream cipher: it is only used
to produce a stream of bits, all related to the key,
but in a manner difficult to reverse. This stream
is then used to xor-encrypt the bits of the mes-
sage. Because in the end, the encryption is just
xoring, errors would not be propagated, or obfus-
cated, so an error in the ciphertext means exactly
one error on the same bit of the cleartext. This
leads to a particular flaw in GSM standard used in
this attack: the error correcting codes are applied
before encryption, on the cleartext. That means,
that the information contained in the cleartext is
first duplicated from 184 bits to 456 bits, and then
encrypted, so that every one of these 456 bits gives
you a different bit of information on the key used in
the cipher. Usually (in other more secure systems),
the encryption comes first, which means that every
one of the 184 bits of cleartext is first encrypted,
and the encrypted bits are then duplicated into re-
dundant data to form a final message of 456 bits:
contrary to the GSM approach, instead of 456 bits
of usable information, one may really only have 184,
because that is the quantity of keystream that was
used in the encryption process.

4.2 Implementation

This attack focuses on the misuse of the error-
correcting codes in GSM. The matrices considered
here are the ones mentioned in section 3.2. In [6],
the authors introduce another important matrix:
the parity-check matrix, which is the matrix H such
that: ¢ is a codeword (i.e. 3z cleartext, c =z x G)
<= the syndrome S = H x ¢ = 0. This matrix is
easy to compute when G is in systematic form G':

10 0
0 1
G = T
10
0 - 01

The matrix H is then given by:

1 0 --- 0
0 1
H = Tt
.10
0 ..o 0 1

Considering GSM, G would be a 184 x 456 matrix,
whereas H would be a 456 — 184 = 272-line, 456-
column matrix. Unfortunately, the matrix G used
for the whole encoding in GSM is not in this con-
venient systematic form, and [6] does not explain
how to handle this case. With a Gauss elimination,
however, one can find a 184 x 184 invertible matrix
L and a 456 x 456 permutation matrix P so that
G' = LXxGx P. P being a premutation matrix, it is
invertible, thus G = L~! x G’ x P~!. We will here
show that the matrix H x P~ is actually a parity-
check matrix for G in its non-systematic form. Let
G be then entire code matrix, G’ the matrix for
the same code in systematic form, and L, P the
afforementioned matrices. Let ¢ be a codeword for
G, ie. Jx/c =2 xG. Ifwecala =2xx L}
c=2'XLxG,s0cxP=2'XLxGxP=1'"xG.
Hence, ¢ x P is a codeword for the matrix G’,
which is in systematic form. P being a permu-
tation matrix, P! = P’ and c being a vector,
cx P = P71 xct. We now compute the product
with H, and ¢ x P being a codeword for the ma-
trix G/, Hxex P =0,s0 Hx P! x¢t =0.

The matrix H x P! is indeed a parity-check ma-
trix for the code in its non-systematic form. Our
implementation of the tool computes every one of
these matrices in order to compute the real syn-
drome of the given ciphertext. When given a ci-
phertext C, using part of the demonstration in [6],
H can be used to compute a syndrom giving in-
formation on the value of the keystream used k.
Contrary to their model, the encoding does not use
any g to our knowledge, and can be modeled with
only a matrix G so the equations are not exactly
the same. Let C' be the ciphertext encoded from
cleartext z, and then xored with the keystream k:
C=x2xGPk. So, HXxP 1 xC = Hx(zxGDk) =
HxPl1x(zxG@®HxP1xk=HxPxk.

4.3 Change of variables

The final aim of the attack is to recover the key.
However, the syndromes computed only contain in-
formation about the keystream, which is calculated
from the values of the variables in the LFSRs Ry,
R,, and R3, which themselves depend on the key
and the LFSR R4. For the attack to work, the equa-
tions on the keystream must be adapted into equa-
tions on the variables of the LFSRs first. The de-
pendencies between the LFSRs and the keystream
vary greatly with the initial value of R4, and since
the variables of R4 play no role in the value of the
keystream, so it is not possible to find them. The
possibilities for the initial value of R4 must hence be
bruteforced. Because R4 contains 17 bits of data,
and the 10** one is always initialized to one, 216
possibilities exist. However, the dependencies be-
tween the LFSRs and the keystream are not linear,
but quadratic, as explained in [6], so one has to
linearize the system, which leads to a description
by a matrix of size 456 x 656. As was mentioned
before, 2'6 can arise, so as many matrices must be
calculated and tried, in order to find the right one.
That is the process as it was described in [6], but
the tool we developed takes a slightly different ap-
proach. In that article, the authors mention that
they need 8 frames of ciphertext in oreder to recover
the key, but they do not describe the method used.
The tool described here uses a simple Gauss elim-
ination, but it needs 12 frames of ciphertext, 114-
bit long each, that are three 456-bit encoded mes-
sages and keystreams. It computes 3 syndromes,
and the 216 matrices are not of size 456 x 656, but

(3%x456) x 656, i.e. 1368 x 656. We call one of these
S, which can be subdivided into three 456 x 656
matrices S1, So, S3. We have the following linear
system: S x r = K, where k is the concatenation
of 3 unknown keystreams ki, ko, and k3, and r is
the vector of unknowns representing the state of
the LESRs. The problem arises from the fact, that
k is unkown. On the other hand, H x P~! x k;
can be computed, since it has been proven to be
equal to H x P! x C;, and all these elements
are known. In the software, it is then the sys-
HxP 1xS xr=HxP l'xk
HxPlxSyxr=HxP!xky
HxP 1x8;xr=HxP ! xks
is used. The matrices (H x P! x S;);eq,3) are
272656, so it is more efficient to store the matrices
after multiplying them with H x P~! and regroup-
ing the three matrices together. Once that is done,
the original keysetup must be reversed in order to
find the key. The keysetup being a farly compli-
cated process, the easiest way to do that, which
was chosen in the implementation, is to proceed to
the keysetup with variables instead of real values,
and then analyze the dependencies in a linear sys-
tem that can be solved by Gauss Elimination.

tem that

4.4 Attack scenario

As explained above, this attack needs to exhaus-
tively explore 2'6 cases, according to the initial
value of R4. That means 2'6 matrices of size
1368 x 656. Because that would last a while to
calculate, and because they only need to be cal-
culated once — they only depend on the design of
A5/2, so they are unique —, it seems like a good so-
lution to precalculate and store them. The average
time cost would be 3 minutes 24s, and it would gen-
erate 6,85 GB of data, but memory space is cheap
nowadays, so that should not be a problem. That
was the solution in the article, but the implemented
solution computes the matrices of size 816 x 656 as
described above, which only takes 4,08 GB of mem-
ory and took 2 hours 23 minutes 44 seconds to run.
Because this data can be calculated in advance, it
does not matter that it takes a few hours, and it
enables the actual attack to be much faster, since
the products would have been computed anyways.
The most time-consuming process in the attack it-
self is the exhaustive search through the 2'6 ma-
trices, so it is important that it takes as few time

as possible to eliminate the wrong ones. That is
why several filters were implemented. During the
attack, the linear system is first trigonalized using
Gauss elimination, but since there are 1368 equa-
tions for only 656 variables, a lot of these equations
are redundants. Fortunately enough, we checked
on thousands of cases that the program always has
enough equations to solve the problem. That could
probably be explained by the fact that the A5/2
cipher aims to diffuse the information, so over a
short period of keystream, the least is redundant.
However, what that means, is that after the elimi-
nation, 816 — 656 = 160 equations are of the form
0 = b, where b € {0,1}. Matrices that result in any
strictly positive number of equations 0 = 1 can-
not be solved and should therefore be eliminated.
This criterium makes elimination of matrices very
fast, but two others can be checked: since the vari-
ables are not really independant, but only treated
as such, one can check that the quadratic variables
are in accordance with the others. The last check
is done during the reversing of the keysetup. Actu-
ally, however, the first criteria suffices to eliminate
100% of the inadequate matrices on the 50000%
random cases we tested. Such numbers would indi-
cate that there is a theoretical reason behind that
fact, but we could not take the time to look for it.

Performances

Our testing environment is a Bull Escala server
(i686) composed of four 8-core processors (Intel
Xeon 75xx Nehalem EX, with Hyper-threading and
TurboBoost) providing us with 32 physical cores
(64 virtual cores), running Red Hat Enterprise
Linux 5 with 128GB of RAM. Although the cod-
ing & decoding process is almost instant® (see fig-
ure 3), the attack phase requires much more re-
sources, both in terms of memory and processing
time. Because we use a dictionary of resolution ma-
trices to realize the attack, the whole attack pro-
cess is easily parallelizable: on the one hand the
dictionary can be calculated in separate processes,
and on the other hand the secret key search can be
dispatched on several threads using different dic-
tionary subsets. Note that to get even better per-
formances, we chose to load the full dictionary in
RAM instead of using the hard drive cache to re-

3For very large chunks of data, it can even be done in
parallel

trieve data?. Figure 4 gathers some average timing
results depending on the number of cores used: the
blue chart denotes the time needed to analyze all
the matrices (thus not stopping the program when
the correct key is found), and the red one denotes
the average attack time on 10000 random secret
keys and frame ids.

400

350 q

- \ =O==Avg. Attack Time (s)

o 300

s \ == Full Analysis (s)

g 250

$ \

] 200

=

< 150 \

s 100 N

o

g \ \

@ % O

0 /;(}_

Number of cores 1 2 4 8 16 32 64
Avg. Attack Time (s) | 121 67 36 21 13 7 4
Full Analysis (s) 373 184 95 46 24 17 9

Figure 4: Attack speed test

5 Contributions

5.1 Description of the tool

We aimed at producing an easy-to-use & turnkey
tool allowing direct GSM hacking to demonstrate
that A5/2 is not only theoretically weak, but also
really easy to crack in a concrete way. We hope this
will finally make the public aware of the problem
arisen by GSM standard.

The program was written in C language, and the
source code is fully available under the terms of the
GNU General Public License[7] on our website[5].
We did not operate on a real system for technical,
operational, and legal reasons, but we simulated the
whole GSM encoding process, and then performed
the attack on the resulting data.

The only real implementations related to our work
existing on the Internet® were an implementation
of the A5/2 cipher which seemed inconvenient in
the way it handled data, and a generic implemen-
tation of blocked convolutional codes and viterbi
decoding, that presented what appeared to us as

4We gain in average a factor 2 on matrices lookup time
5To our knowledge, as for June 2011

a bug and did not seem to be actively supported
since 1999. As a result, we decided to write our
own versions of all the modules presented in this
paper, apart from the voice encoder (provided by
SoX).

5.2 Adaptation to Physical Attack

In order to transpose the attack to the physi-
cal layer, the required equipment only consists
of a USRP (Universal Software Radio Periph-
eral[8]) and of an appropriate driver (for example
GNURadio[9] or OpenBTS[10]). The attack be-
ing focused on the SACCH, there would also be a
need to analyze a bit further the full GSM specifi-
cations to be able to decode data on other channels.
Also (in addition to the fact that breaking ciphers
on real data may not be considered to be legal),
the legal framework concerning the authorization
of using GSM frequency bands may depend of the
country you reside in. Chris Paget exposed in a
Defcon video recording [11] the US legislation on
this matter.

6 Countermeasures

As we commented above, what made this attack
possible is a conception flaw inherent to the design
of the GSM standard, so a natural reaction would
be to change the standard, which means changing
both software and hardware (as many functionnal-
ities are directly implemented in chips for perfor-
mance concern and low energy consumption) of all
GSM base stations and handsets. This is a major
inconvenience, because GSM is already very widely
deployed. The change would be very expensive and
very difficult to organize. That is why the industry
has answered this threat by introducing other al-
gorithms such as A5/1 and A5/3, which are much
more secure, and can be used by the base stations.
The problem remaining is, that in order to save
room, these 3 algorithms share the same hardware,
and the same key.

Knowing that the BTS (Base Transceiver Sta-
tion) has full control over the link securing method
used to communicate with handsets, the GSM is
therefore very vulnerable to man-in-the-middle at-
tacks, because a malicious GSM base station could
impersonate the network to the handset, and de-

mand it use A5/2, recover its secret key, and then
impersonate the handset to the network, this way
having total control over the traffick from and to
the trapped handset. The only solution would be
to disable the possibility of using A5/2 in the hand-
set, and that is very hard to do for all the handsets.
This solution is not realistically manageable on ex-
isting phones.

Our attack is very practical because it only needs
some chunks of ciphertext. But because of that it
has an important drawback: it cannot work when
errors occur. The whole attack is based on the fact
that, to take into account the errors that may oc-
cur on the air, GSM uses error correcting codes,
and in this case not wisely. The problem is, be-
cause the correction is applied to the cleartext, it
is not possible to correct eventual errors on the ci-
phertext, without deciphering it first. In the stan-
dard process —the way GSM works, not considering
any attack— that is not such a big deal because the
encryption process only consists of a bitwise xor
with the keastream, and no error propagation occur
(contrary to block cipher encryption). Thus, if a bit
is wrong in the cipher, it can be decrypted excatly
the same way and then error correcting codes would
then take over from it, successfully recovering the
unaltered data. However, considering our attack,
the event of bits flipping randomly in the cipher
may lead the process to be considerably harder: in
fact, each bit of the keystream is part of a system of
equations and a single error would lead to inconsis-
tancies, dismissing the tested configuration of R4.
Two different kind of errors can happen : Bits may
be flipped (some bits that had 1 as their value now
have 0, or vice-versa) or erased (some bits have an
undetermined value). In the second case ©, it is still
possible to correct the errors without exhaustively
trying all the possibilities, just by dismissing the
equations related to the erased bit. However, in
case of flipped bits, the only solution is to try to
guess which bits were flipped. The time complexity
is exponential, so it can still be manageable for a
very low number of errors’, but it is not a viable
solution for any number®. For more accurate infor-

6 And only if the hardware provides the erasures locations

"In order to decrypt a message containing only 2 errors
agmonst 3 chunks of 456 bits, the time needed on our test
environment is approx. 6 months of constant processing.

8The only solution in this case is to discard frames that
do not lead to a result, and hope of getting unaltered others

mation about error handling, please refer to section
5 of [6]. Considering the previous analysis, a simple
countermeasure could be to randomly inject errors
into the ciphertext, so that they can be corrected
by the correcting codes in the system that already
knows the key, and make it difficult, or even almost
impossible for an attacker to use this attack.

References

[1] Alex Biryukov, Adi Shamir, and David Wag-
ner. Real time cryptanalysis of A5/1 on a PC.
In FSE: Fast Software Encryption, pages 1-18.
Springer-Verlag, 2000.

[2] Orr Dunkelman, Nathan Keller, and Adi
Shamir. A practical-time attack on the A5/3
cryptosystem used in third generation GSM
telephony. 2010. http://eprint.iacr.org/.

[3] ETSI - European Telecommunications Stan-
dards Institute. Digital cellular telecommu-
nications system (Phase 2+) (GSM); Chan-
nel coding (GSM 05.08 version 8.5.1 Release
1999), November 2000.

[4] SoX. http://sox.sourceforge.net.
[5] Nicolas Paglieri and Olivier Benjamin.
Ab52HackTool Project Webpage. http:

//www.ni69.info/security-gsm-en.php.

[6] Elad Barkan, Eli Biham, and Nathan Keller.
Instant ciphertext-only cryptanalysis of GSM
encrypted communication. pages 600-616.
Springer-Verlag, 2003.

GNU General
http://www.gnu.org/

[7] Free Software Foundation.
Public License, v3.
licenses/.

[8] Ettus Research LLC. Universal Software Ra-
dio Peripheral. http://www.ettus.com.

[9] GNURadio Software Development Toolkit.
http://gnuradio.org.

[10] Kestrel Signal Processing, Inc. OpenBTS.

http://openbts.sourceforge.net.

[11] Chris Paget. Practical Cellphone Spy-
ing. http://www.youtube.com/watch?v=
DU8hg4FTmOg.

